Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Acylated Quinic Acids Are the Main Salicortin Metabolites in the Lepidopteran Specialist Herbivore Cerura vinula.

Identifieur interne : 001066 ( Main/Exploration ); précédent : 001065; suivant : 001067

Acylated Quinic Acids Are the Main Salicortin Metabolites in the Lepidopteran Specialist Herbivore Cerura vinula.

Auteurs : Felix Feistel [Allemagne] ; Christian Paetz [Allemagne] ; Riya C. Menezes [Allemagne] ; Daniel Veit [Allemagne] ; Bernd Schneider [Allemagne]

Source :

RBID : pubmed:29549572

Descripteurs français

English descriptors

Abstract

Salicortin is a phenolic glucoside produced in Salicaceae as a chemical defense against herbivory. The specialist lepidopteran herbivorous larvae of Cerura vinula are able to overcome this defense. We examined the main frass constituents of C. vinula fed on Populus nigra leaves, and identified 11 quinic acid derivatives with benzoate and/or salicylate substitution. We asked whether the compounds are a result of salicortin breakdown and sought answers by carrying out feeding experiments with highly 13C-enriched salicortin. Using HRMS and NMR analyses, we were able to confirm that salicortin metabolism in C. vinula proceeds through deglucosylation and ester hydrolysis, after which saligenin is oxidatively transformed into salicylic acid and, eventually, conjugated to quinic acid. To the best of our knowledge, this is the first report of a detoxification pathway based on conjugation with quinic acid.

DOI: 10.1007/s10886-018-0945-1
PubMed: 29549572


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Acylated Quinic Acids Are the Main Salicortin Metabolites in the Lepidopteran Specialist Herbivore Cerura vinula.</title>
<author>
<name sortKey="Feistel, Felix" sort="Feistel, Felix" uniqKey="Feistel F" first="Felix" last="Feistel">Felix Feistel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Paetz, Christian" sort="Paetz, Christian" uniqKey="Paetz C" first="Christian" last="Paetz">Christian Paetz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Menezes, Riya C" sort="Menezes, Riya C" uniqKey="Menezes R" first="Riya C" last="Menezes">Riya C. Menezes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Veit, Daniel" sort="Veit, Daniel" uniqKey="Veit D" first="Daniel" last="Veit">Daniel Veit</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Bernd" sort="Schneider, Bernd" uniqKey="Schneider B" first="Bernd" last="Schneider">Bernd Schneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany. schneider@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29549572</idno>
<idno type="pmid">29549572</idno>
<idno type="doi">10.1007/s10886-018-0945-1</idno>
<idno type="wicri:Area/Main/Corpus">000F19</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F19</idno>
<idno type="wicri:Area/Main/Curation">000F19</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F19</idno>
<idno type="wicri:Area/Main/Exploration">000F19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Acylated Quinic Acids Are the Main Salicortin Metabolites in the Lepidopteran Specialist Herbivore Cerura vinula.</title>
<author>
<name sortKey="Feistel, Felix" sort="Feistel, Felix" uniqKey="Feistel F" first="Felix" last="Feistel">Felix Feistel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Paetz, Christian" sort="Paetz, Christian" uniqKey="Paetz C" first="Christian" last="Paetz">Christian Paetz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Menezes, Riya C" sort="Menezes, Riya C" uniqKey="Menezes R" first="Riya C" last="Menezes">Riya C. Menezes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Veit, Daniel" sort="Veit, Daniel" uniqKey="Veit D" first="Daniel" last="Veit">Daniel Veit</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schneider, Bernd" sort="Schneider, Bernd" uniqKey="Schneider B" first="Bernd" last="Schneider">Bernd Schneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany. schneider@ice.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena</wicri:regionArea>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>07745, Jena</wicri:noRegion>
<wicri:noRegion>Jena</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acylation (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Glucosides (analysis)</term>
<term>Glucosides (metabolism)</term>
<term>Herbivory (MeSH)</term>
<term>Hydrolysis (MeSH)</term>
<term>Larva (chemistry)</term>
<term>Larva (physiology)</term>
<term>Lepidoptera (chemistry)</term>
<term>Lepidoptera (physiology)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (chemistry)</term>
<term>Populus (physiology)</term>
<term>Quinic Acid (analysis)</term>
<term>Quinic Acid (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide quinique (analyse)</term>
<term>Acide quinique (métabolisme)</term>
<term>Acylation (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Glucosides (analyse)</term>
<term>Glucosides (métabolisme)</term>
<term>Herbivorie (MeSH)</term>
<term>Hydrolyse (MeSH)</term>
<term>Larve (composition chimique)</term>
<term>Larve (physiologie)</term>
<term>Lepidoptera (composition chimique)</term>
<term>Lepidoptera (physiologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Populus (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Glucosides</term>
<term>Quinic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucosides</term>
<term>Quinic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Acide quinique</term>
<term>Glucosides</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Larva</term>
<term>Lepidoptera</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Larve</term>
<term>Lepidoptera</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide quinique</term>
<term>Glucosides</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Larve</term>
<term>Lepidoptera</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Larva</term>
<term>Lepidoptera</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acylation</term>
<term>Animals</term>
<term>Herbivory</term>
<term>Hydrolysis</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acylation</term>
<term>Animaux</term>
<term>Herbivorie</term>
<term>Hydrolyse</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Salicortin is a phenolic glucoside produced in Salicaceae as a chemical defense against herbivory. The specialist lepidopteran herbivorous larvae of Cerura vinula are able to overcome this defense. We examined the main frass constituents of C. vinula fed on Populus nigra leaves, and identified 11 quinic acid derivatives with benzoate and/or salicylate substitution. We asked whether the compounds are a result of salicortin breakdown and sought answers by carrying out feeding experiments with highly
<sup>13</sup>
C-enriched salicortin. Using HRMS and NMR analyses, we were able to confirm that salicortin metabolism in C. vinula proceeds through deglucosylation and ester hydrolysis, after which saligenin is oxidatively transformed into salicylic acid and, eventually, conjugated to quinic acid. To the best of our knowledge, this is the first report of a detoxification pathway based on conjugation with quinic acid.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29549572</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>44</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2018</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Acylated Quinic Acids Are the Main Salicortin Metabolites in the Lepidopteran Specialist Herbivore Cerura vinula.</ArticleTitle>
<Pagination>
<MedlinePgn>497-509</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-018-0945-1</ELocationID>
<Abstract>
<AbstractText>Salicortin is a phenolic glucoside produced in Salicaceae as a chemical defense against herbivory. The specialist lepidopteran herbivorous larvae of Cerura vinula are able to overcome this defense. We examined the main frass constituents of C. vinula fed on Populus nigra leaves, and identified 11 quinic acid derivatives with benzoate and/or salicylate substitution. We asked whether the compounds are a result of salicortin breakdown and sought answers by carrying out feeding experiments with highly
<sup>13</sup>
C-enriched salicortin. Using HRMS and NMR analyses, we were able to confirm that salicortin metabolism in C. vinula proceeds through deglucosylation and ester hydrolysis, after which saligenin is oxidatively transformed into salicylic acid and, eventually, conjugated to quinic acid. To the best of our knowledge, this is the first report of a detoxification pathway based on conjugation with quinic acid.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Feistel</LastName>
<ForeName>Felix</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paetz</LastName>
<ForeName>Christian</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Menezes</LastName>
<ForeName>Riya C</ForeName>
<Initials>RC</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Veit</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schneider</LastName>
<ForeName>Bernd</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-4788-1565</Identifier>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Beutenberg Campus, D-07745, Jena, Germany. schneider@ice.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005960">Glucosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>058C04BGYI</RegistryNumber>
<NameOfSubstance UI="D011801">Quinic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YI29948E0Q</RegistryNumber>
<NameOfSubstance UI="C113068">salicortin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000215" MajorTopicYN="N">Acylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005960" MajorTopicYN="N">Glucosides</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007915" MajorTopicYN="N">Lepidoptera</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011801" MajorTopicYN="N">Quinic Acid</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cerura vinula</Keyword>
<Keyword MajorTopicYN="N">Down-stream metabolism</Keyword>
<Keyword MajorTopicYN="N">Populus nigra</Keyword>
<Keyword MajorTopicYN="N">Salicaceae</Keyword>
<Keyword MajorTopicYN="N">Salicortin</Keyword>
<Keyword MajorTopicYN="N">Stable isotope labeling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29549572</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-018-0945-1</ArticleId>
<ArticleId IdType="pii">10.1007/s10886-018-0945-1</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Insect Biochem Mol Biol. 2016 Apr;71:1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26855199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 26;10(5):e0128200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26010156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1984 Mar;10(3):499-520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta Med. 2011 Jul;77(10):1024-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21305449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 May 20;111(20):7349-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24799680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteome Sci. 2011 Feb 10;9(1):9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21310072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 May;29(5):1083-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2016 Jun 20;17 (5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27331808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Aug;27(8):1595-615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11521399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2001 Aug;112(4):552-558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11473716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmazie. 1964 Nov;19:725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14346301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1497-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2016 Jul 20;64(28):5621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27381890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2015 Mar 30;20(4):5566-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25830788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2016 Nov;78:39-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27503687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1990 Dec;16(12):3277-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24263429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1989 Sep;15(9):2335-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2014 Aug;89(3):531-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25165798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Jul;32(7):1415-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16724272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1989 Oct;81(2):219-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1993 Dec;19(12):2917-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24248785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 1992 Sep;55(9):1204-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1431941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inherit Metab Dis. 1991;14(4):421-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1749210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Toxicol Environ Health. 1985;16(5):665-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4093988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2010 Dec;164(4):993-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20680646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Oct-Nov;70(15-16):1899-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19733867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15206-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22949643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Bioanal Chem. 2017 Jun;409(15):3807-3820</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28357483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 May;17(5):293-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22425020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1989 Dec;15(12):2667-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24271680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1970 Dec;5(4):334-346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28309786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1993 Jul;19(7):1521-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24249181</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Feistel, Felix" sort="Feistel, Felix" uniqKey="Feistel F" first="Felix" last="Feistel">Felix Feistel</name>
</noRegion>
<name sortKey="Menezes, Riya C" sort="Menezes, Riya C" uniqKey="Menezes R" first="Riya C" last="Menezes">Riya C. Menezes</name>
<name sortKey="Paetz, Christian" sort="Paetz, Christian" uniqKey="Paetz C" first="Christian" last="Paetz">Christian Paetz</name>
<name sortKey="Schneider, Bernd" sort="Schneider, Bernd" uniqKey="Schneider B" first="Bernd" last="Schneider">Bernd Schneider</name>
<name sortKey="Veit, Daniel" sort="Veit, Daniel" uniqKey="Veit D" first="Daniel" last="Veit">Daniel Veit</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001066 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001066 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29549572
   |texte=   Acylated Quinic Acids Are the Main Salicortin Metabolites in the Lepidopteran Specialist Herbivore Cerura vinula.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29549572" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020